VAI TRÒ CỦA CHỨNG MINH TRONG TOÁN HỌC (G. FREGE, 1884)
Đưa lên mạng ngày 15-04-2020
Từ khóa: Chứng minh (Khái niệm) trong Toán học ;
Frege, Gottlob – Trích đoạn

C1

VAI TRÒ CỦA CHỨNG MINH
TRONG TOÁN HỌC
(1884)

Tác giả: Gottlob Frege[1]
Bản tiếng Pháp: Claude Imbert
Người dịch: Nguyễn Văn Khoa

*

Các công thức số học như: 5 + 7 = 12[2] và các định luật như luật kết hợp, thường được xác nhận bởi vô số ứng dụng hàng ngày, đến mức có vẻ như là lố bịch khi chúng ta đặt nghi vấn về chúng, và đòi hỏi bằng chứng. Thế nhưng, dường như có ghi ngay trong bản chất của toán học rằng, bất kỳ trong lĩnh vực nào, mỗi khi ta có thể đưa ra một chứng minh, thì nó vẫn tốt hơn là một xác nhận quy nạp. Eukleidês thường chứng minh cả những điều người ta sẵn lòng chắp nhận cho ông. Và khi sự nghiêm ngặt của ông có vẻ không còn đủ nữa, thì các công trình nghiên cứu cũng bắt đầu, và chúng đều tập trung trên tiên đề về các đường song song[3].

Như vậy, cái phong trào tự đặt cho mình mục đích là phải đạt cho kỳ được sự nghiêm ngặt tột cùng đã vượt quá các động lực ban đầu, và những động lực này không ngừng mở rộng và gia tăng đòi hỏi của chúng.

Như thế chính vì sự chứng minh không chỉ có mỗi mục đích là giải phóng một mệnh đề khỏi mọi nghi ngờ; nó còn cho phép ta thâm nhập vào tình trạng phụ thuộc tương đối của sự thật này vào chân lý kia.  Một khi được thuyết phục rằng một khối đá là không thể lay chuyển được, vì ta đã cố gắng lay động nó mà không thành công, ta có thể tự hỏi điều gì đã giữ nó vững chắc như vậy. Rồi khi càng theo đuổi công trình nghiên cứu, thì chúng ta càng khám phá ra rằng có rất ít sự thật cơ bản cho phép ta từ đấy giải quyết những khó khăn, và sự đơn giản hóa này tự nó đã là một mục đích đáng để nỗ lực. Thậm chí ta còn có thể hy vọng đạt được những phương pháp tổng quát về nghệ thuật xây dựng các khái niệm, cũng như các nguyên tắc nền tảng cho mọi trường hợp, ngay cả những trường hợp phức tạp nhất, thông qua nhận thức về những gì mà con người đã làm được dựa trên bản năng trong các trường hợp đơn giản nhất, miễn là có thể xác định được nơi chúng phần có giá trị phổ quát.  

Gottlob Frege,
Nền Tảng Của Số Học
(Die Grundlagen der Arithmetik, 1884 =
Les Fondements de l'arithmétique,
Paris, Le Seuil, 1969, tr. 126).


[1] Friedrich Ludwig Gottlob Frege (1848-1925): nhà lô-gic học, toán học và triết gia người Đức. Tác phẩm: Begriffsschrift, 1879; Die Grundlagen der Arithmetik (1884); Grundgesetze der Arithmetik (2 q., 1893-1903); Écrits logiques et philosophiques (1971, gồm nhiều tiểu luận, 1882-1904); Écrits posthumes (1994).

[2] Quy chiếu rõ rệt về Kant. Kant thường dùng ví dụ này để chỉ ra rằng các mệnh đề số học là mệnh đề tổng hợp chứ không phải mệnh đề phân tích.

[3] Ám chỉ những nỗ lực đã dẫn đến các hệ thống hình học phi Eukleidês.

CHUYÊN TRANG CỦA NHÀ NGHIÊN CỨU Nguyễn Văn Khoa